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A variational equation is used within the framework of the special theory ofre- 
lativity, to derive a system of equations of mechanics and electrodynamics de- 
scribing the behavior of a polarizable and magnetizable continuous medium. 

General dynamic equations are used toderive and assess the relativistic equa- 
tions of impulses for a continuous medium, for a number of concrete models of 

continuous media. 

Let x1, xa, x3 and ti = ct denote the coordinates in an arbitrarily chosen inertial 
frame of reference of the observer with the metric signature (- - - +), and c the 

speed of light in vacuum; let also sl, is, Es and EP = C’G be the coordinates of the 
points of the medium in the moving concomitant coordinate system frozen into the me- 

dsrn and xi = xi @) be the law of motion of the medium. We denote by gij and 

gfl the components of the metric tensor in theAobserver’s system and in the comoving 

coordinate SYS~~IJJ. respectively, g&&Ixj = gijd~d%’ = d$; by P = ~0 (%p) 

[det [ gijn - UiUi”~I-‘lr the mass density of the medium; by ui = ax* /*a%* the 
contravariant components of the four-dimensional velocity vector and by xja the deri- 

vative dlci / a%i. (Here and henceforth the lower case Italics indices assume the values 

1, 2, 3, 4 and the Greek letter indices the values 1, 2, 3). To describe the effects of the 

interaction between the electromagnetic field and the polarizable and magnetizable 
medium, we introduce the following antisymmetric electromagnetic field tensors with 
the components Ftj and N’i : 

0 B8 --B2 E, 

I 

0 Hs -Ha -D' 

Fii= -;; ' 
B' E2 

-B' OE,' 
Hij = -Ha 0 H, -Ds 

Ha -HI 0 - D3 
-El -Ez -Es 0 Dl 112 Ds 0 I 

To obtain the defining equations of electrodynamics and mechanics of continuous me- 

dia, we use the variational equation in the form [l] 

S Adz4+5W*+6W=0 
+I . 

Here dz, denotes a four-dimensional element of an arbitrary volume of the space of 
events I’, bounded by a three-dimensional surface Z 3. The volume V, may contain 
the surfaces of strong discontinuity S in the characteristics of the electromagnetic field 
and the medium, A is the Lagrange function and 6W* is a given functional which is 
introduced to account for the external forces acting on the medium - electromagnetic 
field system, and for the irreversible processes taking part within the medium. The func- 
tional 6 W is defined by specifying h and SW*. The functions subjected to variation 
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in the variational equation (1) are the unknown functions of ghused to express A and 
6W*. The unknown functions of gk may be discontinuous, but their variations are, by de- 
finition, con~uous. 

Let us define the Lagraugian A in the following specific form: 

Hem f& is the part of the Lagrangian whose dependence on its arguments may vary, de- 
pending on the properties of the medium, KB denote the specified tensor components 
not subject to variation and characterizing the geometrical aud physical properties ofee 
medium, s is the specific entropy density and A k denote the components of a vector to 
be specified later. The functional SW* can be determined, within the framework of the 
phenomena under consideration, by the formula 

SW* = 5 [6Q’“’ - Qi&ziJ dz, +- s [Pi&+ + fYisLAij do, (31 
VI S 

(the choice of the sign preceding the term Qi6zi is governed by the choice of the sig- 
nature of the metric of the pseudo-Euclidean space (- - - +), whfe the signature 
of the metric of the me-~me~ional Euclidean subspace is (+ -I- +)) . In the for- 
mula (3) S@Q represents a virtual generalization of the heat influx process ; Q&$ de- 
termines, for the real processes, the elementary work done by the external forces and the 
external flux of the nonthermal energy to the medium - electmmagrdb field sy&em ; 
Fi are the components of the four-dimensional concentrated surface force ; yi are the 

components of the four-dimensional surface electric current vector and &J i =aA t + 
A ,V&? is the absolute variation of the components of the vector A i which, for the 
case of real increments, yields the increments in the vector components relative to the 
intrinsic coordinate system (i,e. in the inertial coordinate system attached to a particle 
of the medium and undergoing a translational motion relative to the observer’s frame of 
reference at the iustantaneous velocity of the medium particle). 

&I the case of equilibrium processes for which the absolute temperature ?’ is speci- 
fied, we use the virtual analogy of the second law of thermodynamics 

pTGs = SQ@’ -+- SQ’ (4) 

where SQ’ denotes the generalized variation representing the analog of the uncompen- 
sated heat We shall assume that in the case of a real process the possible increment in 
the amount of uncompensated heat is governed by the following three mechanismsonly: 
the presence of the properties of viscosity in the medium, the heat conduction process 
and the emission of Joule heat. ~o~quen~y we can write the c~res~dtng general- 
ized expression in the form sQ, = zijvf*xi _ ik&A k (51 

Hefe ik are &e components of the four-dimensional electric current vector, and the com- 
ponents of the f~rmd~e~ional tensor ~1 j determine the viscous and heat conductivity 

properties of the medium. . . 
Assuming now that 6AR = aAk + Sx:iViAk, 6IP = dHik + &~VJH"~~ 68, 

8FIk = aFI A -j- &&fFtkand &$ are continuous and linearly independent, and Using 
the relations (2) - (51, we obtain from (l), for the continuous processes, a SySkm Of WW- 
tions of electrodynamics and mechanics as well as an expression for the functional 6 ‘w . 
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(here the variations of the functions are determined in accordance with [2,3]), 
The Maxwell equations are 

VkIP = 4nj’ for dA r 

Fik = ViAk - VkAi It aHix 
the equations of state are 

pT + dh, / ds = 0 np~ 6s 

&H”“+_$ = 0 for ‘8Fik 
zk 

and the impulse equations are 

VkPi’ = Qi for SX’ 
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(6) 

(7) 

(8) 

(9) 

Here nk are the components of the four-dimensional vector of the exterior normal to the 
surface 2s + S* (the subscript f means that the integration is carried out on both 

sides of the surface of discontinuity s), and the components of the energy - impulse 

tensor Pi’ in (8) and (9) are determined from the relations which, together with (7). re- 
present the equations of state 

p+ -A,S,k-~x,k-~HkjFij+,r 
ax, ’ (10) 

From Eqs. (6) it follows that the vector A with components Ak represents a vectorpo- 

tential of the electromagnetic field. Using now Eqs. (6) - (8), the relations (10) with 
the equation\ oi continuity Vi (pu”) = 0 for the medium taken into account and the 

definition of the derivative with respect to intrinsic time uiVi = c-1 (d / &) ,we ob- 
tain the following scalar entropy balance equation: 

PT f$ = cjkFkiui - CU'VjTj + (11) 

Setting ik = jk - peuk where ps is the electric charge density, we find that ik repre- 
sent the components of the electric conduction current vector. The four-dimensional 

invariant cikF,iui = cjkFkiu* represents the Joule heat. 
We note that within the framework of our model the momentum equations for the 

medium - electromagnetic field system follow from the impulse equations and the Max- 
well equations. It can be seen that for the real processes h = h,. 

Assuming that the variations 6xi and GLAD are continuous on S, we obtain from the 
variational equation the following relations on the surfaces of discontinuity : 

[PFn,Is, + Fi = 0, [Hk”n,ls, + 451~: = 0 (12) 

This represents the general theory for any A,, which is determined by using the thermo- 
dynamic postulates referring to the nature of the energy of the medium and the field. 
In particular, A, can be given in the form 

ho = - & CijkrFiiFk’ - U (Xii, S, gij, KB) 

where the following relations hold for the tensor components Cijkl: 

C iikl = Cklij = -Cjik[ = -Cijlk 

(13) 
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and u is a scalar function of the thermodynamic parameters of the medium, The sense 
of the latter function will be explained below for certain particular cases. When the func- 

tion A,, is chosen in the form (13) under the assumption that Cijkl = Ciikl (xp, s, 
KB), the equations of state for the electromagnetic field and the impulse equations for 
the medium - electromagnetic field system can be written in the form 

Hij = CijkrFkl 

The case when the relation connecting the components of the tensors Hik and Fil is 
nonlinear, can also be described using the framework of the proposed model, ifwe assume 

that the arguments of the tensor function ci jkl include the components of the tensor 
F mn- 

For a medium with isotropic electromagnetic properties the components of the ten- 

sor Cijkl have the form [2] 

f&l = +,-$ (Yik?tjl - YilYjk) $_ & b!ik”jul - gjkuiul + (16) 

gjl”iuk - &?iluj”k)] v yij = gij - uiuj 

where E and p are the coefficients of the dielectric and magnetic permeability of the 

medium. In the present model these coefficients can, generally speaking, depend on the 

entropy s and the invariants of the tensors zji and KB. 
Below we consider the case in which the components of the tensor Cijkl are given 

by the formulas (16), e = E (p, s) and p = jr (p, s). Then we can transform Eqs.(lS) 
which are valid in any inertial frame of reference, to the form 

V j $$2,‘+ U6i’+ IT: 
B 1 = -& Vj {[+ss FmnFmn - (17) 

P (s $ + $$) FmnFPqg,pUnuq] ~ij} + 

Qi + Ri - && [q F”“F’Pg,q~mY,i] 

The system of equations (6),( 7), (14) and (17) defines, in particular, a model of an elas- 
tic body with possible anisotropic mechanical characteristics. Further concretization of 
the model involves specifying the form of the scalars U, E and p, and of the compon- 

ents of the tensors ~if and ik as functions of the defining parameters of the model. 

As a particular case we consider a relativistic model of an ideal compressible isotro- 
pic fluid, assuming that the external energy flux to the medium - electromagnetic field 
system is absent. If we also assume that the scalar function U depends on the arguments 
p, u’, s and gil and represents the energy of the medium calculated per unit vloume , 

we can write by definition 
u = PC2 + pus (p, s) 

where uO is a function of mass density of the additional internal energy of the medium. 
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After the transformation the impulse equations (17) become 

Ni = - & & [v FkiFS’gjlUkysi 
I 

where p denotes, by definition, the total pressure in the fluid. 
In the absence of an electromagnetic field, the impulse equations (18) coincide with 

the equations of the special theory of relativity. 

Let us consider in greater detail the right-hand side of the four-dimensional impulse 

equations (18). 
In the intrinsic coordinate system the total pressure in the fluid can be written in the 

form 
2 Ez) + pa $$- 

and this is often interpreted as the sum of the hydrodynamic,electrostriction and mag- 

netostriction pressures. 
Using the three-dimensional vector characteristics in the intrinsic coordinate system 

to describe the electromagnetic field in the medium, we can write the first three com- 

ponents of the four-dimensional vector Ni appearing in the right-hand side of (18), for 

the case of a fluid at rest, in the form 

where I&B,, are the components of the completely antisymmetric three-dimensional 

Levi-Civita tensor. 
Considering that for a fluid at rest we have d / do = d / a-c, and using the fact that 

the metrics of the four dimensional pseudo-Euclidean space and of the three-dimension- 

al Euclidean subspace have different signatures, we can show that the sum R, -l- N, in 

the nonrelativistic approximation coincides with the corresponding expression [4] for the 

components of the volume ponderomotive force vector acting on the medium from the 

direction of the electromagnetic field. 

It should be pointed out that the fourth component of the vector Ni appearing in the 
right-hand side of (18) is, in the case of a relativistic fluid, usually different from zero. 
We note that the components of the four-dimensional vector Ni which depend essentially 

on the particular properties of the fluid through the parameters e and IL, can be com- 

bined with the left-hand side of (18). Subsequently, the left-hand side of (18) can be in- 

terpreted as the change in the four-dimensional impulse vector of the medium per unit 
intrinsic time, made more complicated by inclusion of polarization and magnetization. 
In this case the vector with components Ri has the meaning of the four-dimensionalvo- 

lume ponderomotive force vector calculated in accordance with the form of the energy- 
impulse tensor of the Minkowski electromagnetic field. Clearly, the form of (18) is in- 
dependent of the above discrepancy in the interpretation of the medium impulse. 

Passing in (18) to the limit, we obtain the nonrelativistic equations of the motion and 
the energy equation for a polarizable and magnetizable fluid. We note that the simple 
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fOrmUlaS and conclusions obtained above depend on the important assumptions which 
were made about the form of the Lagrangian A, and on the assumption that the medi- 

um is mechanically and electromagnetically isotropic. 

In the case of anisotropic media the generalized formulas (16) can easily be obtained 
by the general methods [5’J. After this we can use the four-dimensional impulse equa- 

tions in the form (15) to obtain for the media, which are electrodynamically anisotropic, 

the exact relativistic in@Se eqUatiOnS describing the motions of anisotropic mediawith- 
in the framework of the special theory of relativity. 

The system of equations derived here is equivalent to the equations obtained in [3, 61; 
the approach used here has, however, a number of advantages. If the medium cannot be 

polarized and magnetized, then the system splits into the subsystems of equations of me- 
chanics and electrodynamics. (To achieve this it is sufficient to set E = p, = 1, while 
in the earlier equations [3] such an approach led to certain complications). Setting e = 1 

and p # 1, we obtain a model of a medium which can only be magnetized, while set- 

ting E # 1 and p = 1 yields a system of equations describing a medium which can 
only be polarized. 

We note that if the components of the electromagnetic field tensors Fi* and JiTij are 

linearly connected by relations of the type (14), then by virtue of the definition of the 

polarization - magnetization tensor Mrj = (r/m)(Fij - Hij) the components ofthe 
tensors pi, and Mrj will also be linearly dependent on each other. 

The approach used here can easily be extended to embrace the case when A,, depends 

on the gradients of the tensor Ftj. In this case the second equation of (7) in thesystem 

(6) - (9) becomes 
(&) =O 

ik 

Moreover the expressions for the complements of the tensor Pt and the functional 6W 

become more complicated and additional relations at the surface of discontinuity S [2] 

are obtained to supplement the system (12). 
In conclusion the author wishes to express his deep gratitude to L. I. Sedov for detailed 

assessment of this paper. 
REFERENCES 

1. Sedov, L. I., Mathematical methods of constructing new models of continuous 

media. Uspekhi matem. nauk, Vol. 20, NP 5, 1965. 

2. Sedov, L. I., Mechanics of Continuous Media. Vol. 1, M~~cow,“Na~lka”, 1973. 

3. Tsypkin, A. G . , use of the variational equation in the study of polarizable and 

magnetizable continuous media. PMM Vol. 37, I@ 5, 1973. 

4. Landau, L. D. and Lifshits, E. M., Electrodynamics of Continuous Media. 

(English translation), Pergamon Press, Book I$O9105,1960. Distributed in the 

u. s. A, by the Addison-Wesley Publ. Co. 

5. Berdichevskii. V.L., On nonlinear tensor functions in the theory of relativity. 

PMM vol.31, El, 196’7. 

6. Sedov, L. I., On fie ponderomotive forces of interaction of an electromagnetic 
field and an ac&erathg material continuum, taking into account finite defor- 

mations. PMM Vol. 29, % 1, 1965. 

Translated by L. K. 


